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What is Statistical Learning?

 Shown are Sales vs. TV, Radio and Newspaper, with a blue linear-regression line fit 

separately to each

 Can we predict Sales using these three? Perhaps we can do better using a model 𝑆𝑎𝑙𝑒𝑠 ≈
𝑓(𝑇𝑉, 𝑅𝑎𝑑𝑖𝑜, 𝑁𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟)
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y=某產品在200家商店的銷售量



Notation

 Here, Sales is a response, dependent variable, or target that we wish to predict. 

We generically refer to the response as 𝑌

 TV is a feature, independent variable, input, or predictor; we name it 𝑋1. 

Likewise, name Radio as 𝑋2, and so on

 We can refer to the input vector collectively as

𝑋 = 𝑋1, 𝑋2, 𝑋3

 Now, we write our model as
𝑌 = 𝑓 𝑋 + ϵ

where ϵ captures measurement errors and other discrepancies and has a mean of zero
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Notation

 Vectors are represented as a column vector

𝑋1 =

𝑋11
𝑋21
⋮

𝑋𝑛1

 We will use 𝑛 to represent the number of distinct data points or observations

 We will let 𝑝 denote the number of variables that are available for predictions

 A general design matrix or input matrix can be written as an 𝑛 × 𝑝 matrix
𝑥11 ⋯ 𝑥1𝑝
⋮ ⋱ ⋮

𝑥𝑛1 ⋯ 𝑥𝑛𝑝

 𝑌 is usually a scalar in our example; if we have 𝑛 observations, it can be written as
𝑦1
⋮
𝑦𝑛
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What is 𝑓(𝑋) good for?

 With a good 𝑓, we can make predictions of 𝑌 at new 

points 𝑋 = 𝑥
 We can understand which components of 𝑋 =
(𝑋1, 𝑋2, . . . , 𝑋𝑝) are important in explaining 𝑌 and which 

are irrelevant. e.g., Seniority and Years of Education have a 

big impact on Income, but Marital Status typically does not

 Depending on the complexity of 𝑓, we may be able to 

understand how each component 𝑋𝑗 of 𝑋 affects 𝑌

 In essence, statistical learning refers to a set of 

approaches for estimating 𝑓
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Why estimating 𝑓

 Prediction: In many situations, a set of inputs 𝑋 are readily available, but the 

output 𝑌 cannot be easily obtained; we can then use መ𝑓 as follows
෠𝑌 = መ𝑓(𝑋)

 In this setting, መ𝑓(𝑋) is often treated as a black box

 There will be reducible and irreducible error

 Reducible error can be potentially improved by using the most appropriate statistical learning 

technique to estimate 𝑓

 Irreducible error may contain unmeasured variables that are useful in predicting 𝑌: since we 

don’t measure them, 𝑓 cannot use them for its prediction. It may also include unmeasurable 

variation

 We will focus on the part of the reducible error
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Why estimating 𝑓

 Inference: We are often interested in understanding the association between 𝑌
and 𝑋1, … , 𝑋𝑝. In this situation, we wish to estimate 𝑓, but our goal is not 

necessarily to make predictions for 𝑌
 Which predictors are associated with the response?

 What is the relationship between the response and each predictor?

 Can the relationship between Y and each predictor be adequately summarized using a 

linear equation, or is the relationship more complicated? 

 We will see a number of examples that fall into the prediction setting, the 

inference setting, or a combination of the two
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How to estimating 𝑓

 𝑔 is the distribution of data that is unknown

 We have training set { 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 }

1. Choose a model 𝑓𝜃
 Parametric 

 Explicit assumption

 Estimating a fixed set of parameters by fitting or training

 Non-parametric

 No explicit assumption

 Need a large number of observations

2. Choose a quality measure (objective function) for fitting

 Mean square error (Likelihood)…

3. Optimization (fitting) to choose the best 𝜃

 Calculus to find close form solution, gradient descent, expectation-maximization…
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Supervised vs Unsupervised learning

 Supervised Learning problem

 In the regression problem, 𝑌 is quantitative (e.g., price, blood pressure)

 In the classification problem, 𝑌 takes values in a finite, unordered set (survived/died, digit 

0-9, cancer class of tissue sample)

 We have training data 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛). These are observations (examples, instances) of 

these measurements

 Unsupervised Learning problem

 No outcome variable, just a set of predictors (features) measured on a set of samples

 Objective is fuzzier - find groups of samples that behave similarly, find features that 

behave similarly, find linear combinations of features with the most variation

 Semi-supervised learning problem

 Only for 𝑚 of the observations (𝑚 < 𝑛) that we have the response
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The regression problem

 Is there an ideal 𝑓(𝑋)? In particular, what is a good value for 𝑓(𝑋) at any 

selected value of 𝑋, say 𝑋 = 4? There can be many 𝑌 values at 𝑋 = 4. A good 

value is
𝑓(4) = 𝐸(𝑌|𝑋 = 4)

 𝐸(𝑌|𝑋 = 4) means the expected value (average) of 𝑌 given 𝑋 = 4. This ideal 𝑓(𝑥) =
𝐸(𝑌|𝑋 = 𝑥) is called the regression function
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The regression function 𝑓(𝑥)

 Also defined for vector 𝑋; e.g. 

𝑓(𝑥) = 𝑓(𝑥1𝑥2, 𝑥2) = 𝐸(𝑌 |𝑋1 = 𝑥1, 𝑋2 = 𝑥2, 𝑋3 = 𝑥3)
 The ideal or optimal predictor of 𝑌 with regard to mean-squared prediction error: 𝑓(𝑥) =
𝐸(𝑌|𝑋 = 𝑥) is the function that minimizes 𝐸[(𝑌 − 𝑓(𝑋))2|𝑋 = 𝑥] over all functions 𝑓 at 

all points 𝑋 = 𝑥

 ϵ = 𝑌 − 𝑓(𝑥) is the irreducible error — i.e., even if we knew 𝑓(𝑥), we would still make 

errors in prediction, since at each 𝑋 = 𝑥, there is typically a distribution of possible 𝑌
values

 For any estimate መ𝑓(𝑥) of 𝑓(𝑥), we have

𝐸 𝑌 − መ𝑓 𝑥
2
𝑋 = 𝑥 = 𝐸[𝑓 𝑥 + ϵ − መ𝑓 𝑥 ]2= [𝑓 𝑥 − መ𝑓 𝑥 ]2+𝑉𝑎𝑟(ϵ)
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http://www.its.caltech.edu/~mshum/stats/natural2.pdf
https://stats.stackexchange.com/questions/191113/proof-for-irreducible-error-statement-in-islr-page-19


How to estimate 𝑓

 Typically, we have few if any data points with 𝑋 = 4 exactly!

 So that we cannot compute 𝐸(𝑌|𝑋 = 𝑥)!

 Relax the definition and let

መ𝑓(𝑥) = 𝐴𝑣𝑒(𝑌 |𝑋 ∈ 𝑁 (𝑥))

where 𝑁(𝑥) is some neighborhood of 𝑥.
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The curse of dimensionality…

 Nearest neighbor averaging can be good for small 𝑝 (𝑝 ≤ 4) and large 𝑛
 We will discuss smoother versions, such as kernel and spline smoothing later in the course

 Nearest neighbor methods can be lousy when 𝑝 is large. Reason: the curse of 

dimensionality. Nearest neighbors tend to be far away in high dimensions.

 We need to get a reasonable fraction of the 𝑛 values of 𝑦𝑖 to average to bring the variance 

down — e.g., 10%

 A 10% neighborhood in high dimensions need no longer be local, so we lose the spirit of 

estimating 𝐸(𝑌|𝑋 = 𝑥) by local averaging

13



The curse of dimensionality
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The curse of dimensionality

𝑝 1 2 3 4 5 6

(a) 

Ball with 

radius 𝑅
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𝜋𝑅3
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Volume of 

hypercube 
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2
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2
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2
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2
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1
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2
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𝑝
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𝑝

2
) See chapter 2 of Foundations of Data Science

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

https://en.wikipedia.org/wiki/Volume_of_an_n-ball
https://www.cs.cornell.edu/jeh/book no so;utions March 2019.pdf
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/


Parametric and structured models

 The linear model is an important example of a parametric model:

𝑓𝐿 𝑋 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝
 A linear model is specified in terms of 𝑝 + 1 parameters 𝛽0, 𝛽1, … , 𝛽𝑝

 We estimate the parameters by fitting the model to training data

 Although it is almost never correct, a linear model often serves as a good and interpretable

approximation to the unknown true function 𝑓(𝑋)
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 A linear model 𝑓𝐿 𝑋 = 𝛽0 + 𝛽1𝑋 gives a reasonable fit here

 A quadratic model 𝑓𝑄 𝑋 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋
2 fits slightly better
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 Simulated example. Red points are simulated values for income from the 

model 
𝑖𝑛𝑐𝑜𝑚𝑒 = 𝑓 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠𝑒𝑛𝑖𝑜𝑟𝑖𝑡𝑦 + ϵ

𝑓 is the blue surface
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 Linear regression model fit to the simulated data
መ𝑓𝐿(𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠𝑒𝑛𝑖𝑜𝑟𝑖𝑡𝑦) = መ𝛽0 + መ𝛽1 × 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + መ𝛽2 × 𝑠𝑒𝑛𝑖𝑜𝑟𝑖𝑡𝑦
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 More flexible regression model መ𝑓𝑠(𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠𝑒𝑛𝑖𝑜𝑟𝑖𝑡𝑦) fit to the simulated 

data. Here, we use a technique called a thin-plate spline to fit a flexible surface. 

We control the roughness of the fit (chapter 7)
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 Even more flexible spline regression model መ𝑓𝑠(𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠𝑒𝑛𝑖𝑜𝑟𝑖𝑡𝑦) fit to the 

simulated data. Here the fitted model makes no errors on the training data! Also 

known as overfitting
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Some trade-offs

 Prediction accuracy versus interpretability

 Linear models are easy to interpret; thin-plate splines are not

 Good fit versus over-fit or under-fit

 How do we know when the fit is just right?

 Parsimony versus black-box

 We often prefer a simpler model involving fewer variables over a black-box predictor 

involving them all
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Assessing Model Accuracy

 Suppose we fit a model መ𝑓(𝑥) to some training data 𝑇𝑟 = 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1…𝑛, 

and we wish to see how well it performs

 We could compute the average squared prediction error over Tr:

𝑀𝑆𝐸𝑇𝑟 = 𝐴𝑣𝑒𝑖∈𝑇𝑟[𝑦𝑖 − መ𝑓(𝑥𝑖)]
2

 This may be biased toward more overfit models

 Instead, we should, if possible, compute it using fresh test data 𝑇𝑒 = 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1…𝑚, 

𝑀𝑆𝐸𝑇𝑒 = 𝐴𝑣𝑒𝑖∈𝑇𝑒[𝑦𝑖 − መ𝑓(𝑥𝑖)]
2
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 The black curve is truth. Red curve on the right is 𝑀𝑆𝐸𝑇𝑒, grey curve is 𝑀𝑆𝐸𝑇𝑟 . 

Orange, blue and green curves/squares correspond to fits of different flexibility
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 Here, the truth is smoother, so the smoother fit and linear model do really well

26



 Here, the truth is wiggly and the noise is low, so the more flexible fits do the 

best

 Proof of testing error is usually larger than the training error
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https://stats.stackexchange.com/questions/310687/prove-that-the-expected-mse-is-smaller-in-training-than-in-test


Bias-Variance Trade-off

 Suppose we have fit a model መ𝑓(𝑥) to some training data 𝑇𝑟, and let (𝑥0, 𝑦0) be 

a test observation drawn from the population. If the true model is 𝑌 = 𝑓 𝑋 +
ϵ (with 𝑓(𝑥) = 𝐸(𝑌|𝑋 = 𝑥)), then

𝐸 𝑦0 − መ𝑓(𝑥0)
2
= 𝐵𝑖𝑎𝑠𝑇𝑟[ መ𝑓(𝑥0, 𝑇𝑟)]

2+𝑉𝑎𝑟𝑇𝑟 መ𝑓(𝑥0, 𝑇𝑟) + Var(ϵ)

 The expectation averages over the variability of 𝑦0 as well as the variability in 

𝑇𝑟. Note that 𝐵𝑖𝑎𝑠𝑇𝑟 መ𝑓 𝑥0, 𝑇𝑟 = 𝐸 መ𝑓 𝑥0, 𝑇𝑟 − 𝑓 𝑥0

 Typically, as the flexibility of መ𝑓 increases, its variance increases, and its bias decreases. So 

choosing the flexibility based on average test error amounts to a bias-variance trade-off

 Proof of the decomposition
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https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
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https://nvsyashwanth.github.io/machinelearningmaster/bias-variance/
https://jason-chen-1992.weebly.com/home/-bias-variance-tradeoff

https://nvsyashwanth.github.io/machinelearningmaster/bias-variance/
https://jason-chen-1992.weebly.com/home/-bias-variance-tradeoff


Bias-variance trade-off for the three examples
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Classification Problems

 Here, the response variable 𝑌 is qualitative — e.g. email is one of 𝐶 =
(𝑠𝑝𝑎𝑚, ℎ𝑎𝑚) (ℎ𝑎𝑚 = 𝑔𝑜𝑜𝑑 𝑒𝑚𝑎𝑖𝑙), digit class is one of 𝐶 = {0, 1, . . . , 9}. 
Our goals are to:

 Build a classifier 𝐶(𝑋) that assigns a class label from 𝐶 to a future unlabeled observation 𝑋

 What is an optimal classifier?

 Understand how flexibility affects the classification
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 Is there an ideal 𝐶(𝑋)? Suppose the 𝐾 elements in 𝐶 are numbered 1, 2, . . . , 𝐾. 

Let 

𝑝𝑘(𝑥) = Pr(𝑌 = 𝑘|𝑋 = 𝑥), 𝑘 = 1, 2, . . . , 𝐾.

 These are the conditional class probabilities at 𝑥; e.g., see the little barplot at 𝑥 = 5. Then 

the Bayes optimal classifier at 𝑥 is 𝐶(𝑥) = 𝑗 if 𝑝𝑗(𝑥) = max{𝑝1(𝑥), 𝑝2(𝑥), . . . , 𝑝𝑘(𝑥)}
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The orange/blue marks indicate the response 𝑌, either 0 or 1

https://en.wikipedia.org/wiki/Bayes_classifier


 Nearest-neighbor averaging can be used as before. It also breaks down as the 

dimension grows. However, the impact on መ𝐶(𝑥) is less than on Ƹ𝑝𝑘(𝑥), 𝑘 =
1, . . . , 𝐾
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Classification: some details

 Typically, we measure the performance of መ𝐶(𝑥) using the misclassification 

error rate:

𝐸𝑟𝑟𝑇𝑒 = 𝐴𝑣𝑒𝑖∈𝑇𝑒𝐼[𝑦𝑖 ≠ መ𝐶(𝑥𝑖)]
 The Bayes classifier (using the true Ƹ𝑝𝑘(𝑥)) has the smallest error (in the population)

 Support-vector machines build structured models for 𝐶(𝑥)

 We will also build structured models for representing the 𝑝𝑘(𝑥). e.g., Logistic regression, 

generalized additive models
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Example: 𝐾-nearest neighbors in two dimensions

 The Bayes classifier produces the 

lowest possible test error rate, 

called the Bayes error rate

 1 − 𝑚𝑎𝑥𝑗Pr(𝑌 = 𝑗|𝑋 = 𝑥0)
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Example: 𝐾-nearest neighbors in two dimensions

 𝐾-nearest neighbors (KNN) 

classifier

 Pr 𝑌 = 𝑗 𝑋 = 𝑥0 =
1

𝐾
σ𝑖∈𝑇𝑟 𝐼(𝑦𝑖 = 𝑗)
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Example: 𝐾-nearest neighbors in two dimensions
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Example: 𝐾-nearest neighbors in two dimensions

38



Appendix
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The Bias-variance tradeoff

 𝑓 = 𝑓 𝑥 , መ𝑓 = መ𝑓 𝑥, 𝑇𝑟 , 𝑉𝑎𝑟 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2

 𝑦 = 𝑓 + ϵ → 𝐸 𝑦 = 𝐸 𝑓 = 𝑓 (𝑓 is deterministic, independent of 𝑇𝑟and መ𝑓 is 

independent of ϵ)

 𝑉𝑎𝑟 𝑦 = 𝐸 𝑦 − 𝐸 𝑦
2
= 𝐸 𝑦 − 𝑓 2 = 𝐸 ϵ2 = 𝑉𝑎𝑟 ϵ + 𝐸[ϵ]2 = 𝜎2

 𝐸 𝑦 − መ𝑓
2
= 𝐸 𝑓 + ϵ − መ𝑓 + 𝐸 መ𝑓 − 𝐸 መ𝑓

2

= 𝐸 𝑓 − 𝐸 መ𝑓
2
+ E ϵ2 + 𝐸 𝐸 መ𝑓 − መ𝑓

2
+ 2E 𝑓 − 𝐸 መ𝑓 ϵ + 2E ϵ 𝐸 መ𝑓 − መ𝑓

+ 2𝐸 𝐸 መ𝑓 − መ𝑓 𝑓 − 𝐸 መ𝑓 = 𝑓 − 𝐸 መ𝑓
2
+ E ϵ2 + 𝐸 𝐸 መ𝑓 − መ𝑓

2

= 𝐵𝑖𝑎𝑠[ መ𝑓]2+𝑉𝑎𝑟 መ𝑓 + 𝜎2

 𝑀𝑆𝐸 = 𝐸𝑥[𝐵𝑖𝑎𝑠𝑇𝑟[ መ𝑓(𝑥, 𝑇𝑟)]
2+𝑉𝑎𝑟𝐷 መ𝑓(𝑥, 𝑇𝑟) ] + 𝜎2 (Taking expectation over 𝑥)
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https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/overfit-v6.pdf

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/overfit-v6.pdf

